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Abstract—This paper examines the influence of a finite heated length on the heat transfer characteristics
of laminar flows through thick-walled circular tubes. Under the assumption of temperature-invariant
properties, this kind of conjugate problem is governed by four dimensionless groups: the length of the
heated region, the Peclet number, the solid-fluid thermal conductivity ratio, and the radii ratio of the solid
wall. From numerical solutions via the control volume approach, it was found that the two-dimensional
wall offers a heat flow path into the fluid flow controlling the parameters of interest such as, the bulk
temperature of fluid and both internal and external surface temperatures of the solid wall. From a set of
typical cases analysed, it was concluded that both surface temperatures exhibited a substantial variation
in the axial direction and lesser and more gradual variations were exhibited for the distribution of
bulk temperature. A radical limiting solution based on a one-dimensional domain approximation of the
conduction equation for the wall is also explained in detail.

INTRODUCTION

HEAT TRANSFER by forced convection in internal lami-
nar flows has been analysed extensively for a wide
variety of thermal boundary conditions. A com-
pendium of analytical and numerical solutions for the
thermal entrance region of ducts has been docu-
mented in the monograph by Shah and London [1].
From an analysis of the information contained there,
it is apparent that the thermal boundary conditions
of uniform axial and peripheral wall temperature and
uniform axial and peripheral heat rate are realized in
many practical applications. For thin-walled pipes,
these two conditions are equally valid for the external
surface as well as for the internal surface, in other
words the solid—fluid interface. However, for rela-
tively thick-walled pipes, the boundary conditions
imposed at the external surface, in general, are differ-
ent from their counterparts at the internal surface.
From physical reasoning, these deviations arise
because the wall plays a significant role distributing
the heat coming from the external surface to the fluid
flow itself. Under these extreme circumstances, the
thermal boundary conditions at the solid—fluid inter-
face are no longer known a priori. Such interactive
situations have been referred to by Luikov et al. [2]
as conjugate problems in the heat transfer literature.
Correspondingly, this kind of problem needs to be
reformulated within the generalized framework of the
entire solid—fluid system, wherein the temperature and
heat flow at the solid—fluid interface are controlled
by the conductive-convective interaction taking place
there. This generalized approach considers rigorously
the simultaneous effect of axial and transversal heat

conduction in the tube wall of finite length. Accord-
ingly, a combined solution incorporating both fluid
and solid media has to be obtained. In view of the
foregoing, Mori et al. [3] were the first investigators
who examined the above-mentioned conjugate prob-
lem for a circular tube considering two thermal
boundary conditions specified at the outer surface,
i.e. uniform temperature and uniform heat flux. They
assumed the temperature distribution at the wall-fluid
interface in a power series form having unknown
coefficients. Correspondingly, the solution of the
energy equation for the fluid was obtained directly by
superposing the classical Graetz solution using the
temperature distribution at the interface boundary
condition. Similarly, for the particular case of uniform
heat flux applied at the external surface, the authors
used the Graetz series outlined by Siegel et al. [4],
wherein the first seven eigenvalues were computed. In
view of this, the main advantage of the procedure
employed in ref. [4] is that only one term needs to
be evaluated in the region where the temperature is
considered as fully developed. On the contrary, its
unattractive feature is that the number of terms
required in the series for good accuracy increases dras-
tically close to the entrance of the heat exchange
region.

Conversely, the solution to the conduction equation
for the wall domain was derived readily. Therefore,
equating both distributions of temperature and heat
flux across the solid and fluid media, Mori et al. [3]
completed the combined solution for the conjugate
problem, once the unknown coefficients of the power
series were evaluated.

At this stage, it should be pointed out that the
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a  parameter, equation (1a)

h  local convective coefficient [Wm=2°C~!]

ks  thermal conductivity of fluid [Wm~'°C~']

k, thermal conductivity of wall [Wm~'°C~"]

K parameter, equation (1a)

Ky kg lk;

L length of heated region [m]

L* dimensionless value of L, L/r; Pe

Nu local Nusselt number, 2hr;/k;

Pe  Peclet number, 24ar, /o,

¢. convective heat flux at the internal surface
(Wm™?]

4w applied wall heat flux at the external
surface [Wm—?]

I radial coordinate [m]

r,  internal radius of wall [m]

r.  external radius of wall [m]

r*  dimensionless coordinate, r/r;

ré orfn

t wall thickness, r,—r; [m}

T  temperature [°C]

u  velocity of fluid [ms™')

NOMENCLATURE

#  mean velocity of fluid [ms ']

u*  ula

x  axial coordinate [m]

x*  dimensionless coordinate, x/r; Pe.

Greek symbols

oy  thermal diffusivity of fluid [m*s™ ']

p wall conductance parameter,
equation (11)
dimensionless temperature,
k(T—To)/qur.

¥, mean temperature of the wall,
equation (10)

Q  dimensionless heat transfer rate,
equation (9).

Subscripts
b bulk
e external surface
i internal surface
w  wall
0 inlet.

analytical solution developed in ref. [3] may present
some inaccuracies in the vicinity of the origin of the
heat exchange section, and also for the entire section
when its length becomes very small. This anomalous
behaviour may be attributed to the fact that the ana-
lytical solution relies on the use of only seven eigen-
values as reported in ref. [4]. On the other hand, it
should be added that, Luikov et al. [2] delineated
a mathematical procedure for the above-mentioned
conjugate problem, but their closed-form solution
involved highly complicated functions and because of
this, no numerical results were reported.

Additionally, Barozzi and Pagliarini [5] re-exam-
ined the wall conduction effect of the problem treated
in ref. [3] using a numerical procedure that combines
the finite-element method in the solid wall and the
Duhamel theorem at the fluid-solid interface. They
used the heat transfer coefficient as the vehicle for
transmitting information through the interface during
the required iteration process.

The main objective of the present study is to provide
an alternate finite-difference procedure for the prob-
lem of laminar forced convection through thick-
walled tubes exposed to a uniform heat flux in a finite
length. The numerical solution relies on the control
volume approach devised by Patankar [6]. A sche-
matic diagram of the physical situation and the appro-
priate coordinate system is shown in Fig. 1. A search
of the open literature failed to disclose any prior work
on the solution method outlined in the preceding para-
graphs to the problem under study here, except
the publications of Mori et al. [3] and Barozzi and

Pagliarini {5]. In this study, the numerical pro-
cedure was based on an iterative scheme which dealt
simultaneously with the fluid and the wall domains.
The computed results depend on four controlling
parameters : the Peclet number, the fluid—solid con-
ductivity ratio, the wall thickness and the finite length
of the heated region. In presenting these results,
account was taken of the important fact that the only
relevant quantities of interest for practical problems
are the local bulk temperature of the fluid and the
local internal and external surface temperatures of the
wall, all unknown functions of the axial coordinate.
Consequently, numerical results are presented for
each of these quantities, expressed in suitable dimen-
sionless forms. In addition to this, some local Nusselt
numbers are computed also for selected cases and they
are presented for purposes of comparison only.

The computational procedure employed in this
paper is being extended to other more complex situ-

i

Fi1G. 1. Sketch of the problem.
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ations involving combined mechanisms of heat trans-
fer that do not admit closed-form solutions.

There is, of course, related work which forms some
background for the wall conduction effects that were
investigated here [7-10]. However, they differ from
the main lines of the present research.

STATEMENT OF THE PROBLEM

In this paper, the physical model under con-
sideration consists of a constant property fluid flowing
laminarly through a circular tube as shown in Fig. 1.
At the entrance of the finite heat exchange region, the
velocity is assumed fully developed, while the tem-
perature is taken as uniform. The heating takes the
form of a uniform axial and peripheral heat flux
imposed at the outside surface of the tube. As noted
earlier, consideration is being given here to relatively
thick walls so that temperature variations along the
wall and across its thickness are important. Hence, in
view of this, the influence of the wall thickness of the
tube in the thermal development region involves the
application of a two-dimensional energy equation for
both the fluid and solid regions. These governing
equations are expressed in compact form as follows :

2
S rm s (Kae)  Fere (
where, for the fluid domain (0 < r* < 1)
u* =2(1-r*?)
K=1
a=0 (1b)
and, for the solid domain (1 < r* < r¥)
u*=0
K=K
a=1. (1c)

The relevant boundary conditions associated with
this highly coupled conjugate heat transfer problem
are

¢ =0, x*=0,0<r*<1 (2a)
0
%;0, x*=0,1<r*<r¥ (2b)
d
5%:0’ r*=0,0<x*<L* (2¢)
* a¢ * * & *
rekesa=1 rr=r0<x*<L 2d)
17
—a—;g:O, L<r*<r¥ x*=L* Q)

In the preceding equations, the dimensionless vari-
ables are defined by
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while the remaining symbols are described in the
Nomenclature.

Solution of the set of equations (1)-(3) by numeri-
cal techniques provides the two-dimensional tem-
perature fields for the fluid and the solid under the
influence of a uniform wall heat flux applied at a finite
length. This detailed information was processed and
eventually employed to evaluate various thermal
quantities of interest for inclusion in the presentation
of results. One of these quantities is the local mean
bulk temperature of the fluid, which in dimensionless
form, can be expressed as

dp(x*) =2 J‘l u*¢r*dr*. &)}
0

It should be noted that calculation of this global quan-
tity is mandatory because the linear bulk temperature
rise which is characteristic of uniform heated flows
confined by inactive walls does not prevail here.

In addition to the mean bulk temperature, other
quantities of interest are the variations of the internal
and external surface temperatures ¢,; and ¢, with
x*. Numerical evaluation of these quantities will be
reported later and are obtained directly from the tem-
perature fields.

On the other hand, the local Nusselt number dis-
tribution may be evaluated from its conventional
definition

_ —2q%
B Do (x*) — dui(x*)

where g¥; designates the dimensionless heat flux across
the internal surface of the tube given by

0
=2 ©)

Or*|,e_ o

Nu )

In this equation, the superscript (—) means that the
derivative has been numerically evaluated at the fluid
side of the solid—fluid interface.

Conversely, at this stage, it should be emphasized
that calculation of the local Nusselt number has been
performed with the sole purpose of validating the
methodology and comparing our results against
others published in the literature. Nevertheless, the
total heat transferred to the fluid flow may be easily
determined from an energy balance between the sta-
tions x = 0 and L. This energy balance serves to relate
the dimensionless bulk temperature ¢, to a so-called
heat transfer efficiency, defined as

Q= Orauia/ Qinpul . @)

In this equation, Q,,,, denotes the amount of heat
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F1G. 2. Computational domains.

transfer applied at the external surface of the tube
wall. In light of the foregoing

Oraua = ’fTCp[Tb(L) ~ 7).

Upon introducing the dimensionless temperature ¢,
equation (8a) becomes

(8a)

WrC
Orpuie = PC,)L77'“’i2 gk‘ O, (8b)
r
Therefore, combining equations (7) and (8b), and

rearranging terms, yields the simple relation

o=

T 4x*

®

The reader should note that equation (9) allows for a
direct calculation of the total heat transfer rate to the
fluid once the mean bulk temperature is known at
x = L. It should be added that the conventional way
to compute the heat transferred to the fluid, via the
local Nusselt number, is much more elaborate requir-
ing knowledge of the distributions of g%, ¢, and ¢,
respectively (see equation (5)). In addition to this, the
proposed approach involving equation (9) saves some
space because the collection of curves for Nu is not
necessary.

SOLUTION PROCEDURE

Solutions of the problem defined by the foregoing
system of equations were obtained numerically using a
finite-difference methodology. The difference scheme
employed here for solving the energy equations for
both the fluid and the solid regions is an adaptation of
the control-volume approach developed by Patankar
[6]. Firstly, in the fluid region, the difference equations
were written under the assumption of a high Peclet
number flow, wherein the axial conduction term was
omitted and the convection term was evaluated on an
upwind basis. To handle the abrupt change in thermal
conductivity at the internal interface, a special for-
mulation proposed by Patankar [6] is utilized. This
particular formulation is based on the steady, no-
source, one-dimensional situation in which the ther-
mal conductivity varies in a stepwise fashion. To cope
with enhanced accuracy, refinement of the mesh is
mandatory and the grid points were positioned non-
uniformly in both the fluid and the solid domains.
Accordingly, in the radial direction, the grid point
density was highest in the neighbourhood of the inter-
face, whereas in the axial direction the highest con-

centration of grid points was placed in the vicinity
of x* =0 and L*, respectively, as shown in detail
in Fig. 2. Moreover, the grid deployment in the
radial direction was plotted according to a suitable
stretching transformation from a family of general
stretching transformations proposed by Roberts [11].

On the other hand, it should be added that the
salient feature of the numerical methodology em-
ployed in this study is that the resulting penta-
diagonal system of algebraic equations was solved
by implementing the MSI algorithm developed by
Schneider and Zedan {12]. Among the advantages
provided by this powerful algorithm, it can be said
that it is between two and four times faster than the
traditional algorithms commonly used for this kind
of system in the literature.

Changing the attention to the grid employed in this
paper, a total of 900 grid points were used in the fluid-
solid domain. A total of 20 and 10 grid points were
deployed in the fluid and the solid regions, respec-
tively, at each of 30 axial stations. Furthermore, com-
parisons were made with the solution using 10 points
in the fluid and § points in the solid showing that
convergence was met within plotting accuracy.

Accuracy tests of the computational scheme pro-
posed here were made by comparison with the limiting
condition of uniform heat flux with a non-par-
ticipating wall, reported by Shah and London [1]. In
addition to this, comparison was also made with the
analytical solution presented by Mori et al. {3] for the
problem described above, but with a two-dimensional
participating wall. The latter authors based their solu-
tion on seven eigenvalues reported in ref. {4]. In
general, agreement was very good for both situations
having passive and active walls.

ONE-DIMENSIONAL MODEL

Attention will now be focused on the energy equa-
tion for the tube wall. As noted earlier, consideration
is being given in this study to finite thick walls so
that temperature variations along and across the wall
cannot be neglected.

Let us consider the idealization that only one nodal
point is deployed in the wall region, so that the present
methodology reduces to the widely known one-dimen-
sional approximation. This formulation assumes that
temperature changes across the thickness of the wall
are relatively small, and accordingly the wall mean
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F1G. 3. Sketch for the coupling between the temperature
distributions.

temperature distribution ¥, is governed by the dimen-
sionless ordinary differential equation
a7y,

Fes gt 18 =0
where g¥ is the dimensionless heat flux distribution at
the internal surface. The energy balance that leads to
equation (10) incorporates some differences between
the analysis developed by Faghri and Sparrow [7] and
the present analysis. They will be explained in detail
in the following paragraphs.

First, the wall conductance parameter § accounts
for the magnitude of the wall curvature, which is
normally omitted in the conventional one-dimen-
sional model. In view of this, f§, when written
explicitly, has the form

t{t
=kt (1)

where ¢ = r,—r; is the wall thickness. The term in
parentheses on the right-hand side of equation (11)
gives full account of the effect of the tube curvature.
This quantity becomes negligible whenever the analy-
sis is restricted to thin walls (small f) and/or large
diameter tubes (large r;).

Second, the coupling between the temperature fields
of the fluid and the solid is carried out via the heat
flux at the interface, namely ¢%; and also by using the
matching condition

g WD gl
‘Pwi - ‘Pw 2 E

Thus, based on the sketch of Fig. 3, a distinction is
made between the mean temperature of the wall P,
and the corresponding interface temperature ¥,; of
it. This can be done by exploiting the existence of
a linear temperature profile in the transversal direc-
tion of the wall. By applying the limits »* — 1 and
K — o0, the matching condition of equation (12)

(10)

(11)

atany x*.

(12
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reduces to the one suggested by Faghri and Sparrow
{71, namely

¥, =%, atanyx*

Following the above-mentioned ideas, the tem-
perature distribution of the external surface may be
readily computed from the relation

@+ 1
2 szfr:-

Yy = ¥, + (13)

RESULTS AND DISCUSSION

From an engineering point of view, it is not con-
venient to present numerical results for this con-
vective—conductive conjugate problem in terms of the
conventional Nusselt numbers or the equivalent heat
transfer coefficients. The reason for this statement is
that, for this kind of conjugate problem, computation
of the heat transfer coefficient involves three unknown
quantities, namely : g%, ¢, and ¢, all functions of x*,
as stated in equation (5). Consequently, by specifying
the variation of Nu in the axial direction, there is no
possible way to evaluate the heat transfer charac-
teristics of the fluid flow for practical applications.
Seemingly, this fact was not realized by Mori et al.
{3], who presented their results in terms of Nu and ¢,;
only ; g% and ¢, remaining as unknown quantities not
reported in the paper. In view of this limitation, their
graphical results are of little applicability for cal-
culation of engineering problems, other than to estab-
lish that the Nu distributions are bounded by the
corresponding distributions for uniform wall tem-
perature and uniform wall heat flux involving ther-
mally inactive walls, respectively. Conversely, in the
present work, we proposed a totally different
approach, wherein results will be presented in terms
of realistic thermal parameters, namely: the dis-
tributions of bulk temperature ¢, and local tem-
peratures ¢,; and ¢, accounting for two-dimensional
wall conduction. All of these local variables are of
paramount interest in engineering applications.

A detailed inspection of the governing system of
equations (1)-(3), reveals that the temperature dis-
tributions of the fluid and the solid are dependent
on four parameters, namely: Pe, K, r¥ and L* In
recognition of this excessive number of parameters,
numerical solutions were obtained for two Peclet
numbers (Pe == 500 and 1500) and two representative
values of the radii ratio r¥ encountered in practical
problems, such as r¥ = 1.02 and 1.2, with a range of
conductivity ratio X,; for each combination of Pe and
r¥ ranging from K =1 to a maximum of K; = 10*.
All calculations correspond to a fixed heated length,
L*=0.04 used in ref. [3] too. Due to space
limitations, a representative sample involving com-
binations of this set of parameters only is presented
in this section.

At this juncture, it should be pointed out that the
choice of the external radius r, instead of the internal
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F1G. 4. Comparison for the distributions of internal surface
temperature and Nusselt number.

radius r; as the characteristic length in the definition
of the dimensionless temperature ¢ appearing in equa-
tion (3), ensures that the total amount of heat applied
at the external surface of the tube wall is independent
of the value of the radii ratio r*. Thus, in view of this,
computed results are compatible in the whole range
of cases analysed here, because the same amount of
heat is supplied to the fluid stream always. It should
be emphasized that this definition has been employed
by Mori et al. [3] also, but it differs from the one used
by Faghri and Sparrow [7], who neglected the wall
curvature of the tube.

Firstly, to assess the validity of the present numeri-
cal methodology, a typical set of results in terms of
the distributions of internal surface temperature and
local Nusselt number are depicted in Figs. 4(a) and
(b), respectively. These variables were chosen in
ref. [3] to report their numerical results. The cor-
responding family of curves is plotted for r¥ = 1.6,
Pe = 500 and K,; = 100 and 5000. As observed in the
figures, agreement was found to be excellent in the
entire heating region of the tube.

As mentioned in the preceding paragraphs, results
will be presented for the axial distributions of three
quantities : the mean bulk temperature ¢y, the internal
surface temperature ¢, and the external surface tem-
perature ¢,.. The general trends of these results will
be discussed in the following paragraphs.
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Fi1G. 5. Distributions of mean bulk temperature.

Axial distribution of the mean bulk temperature
between x* = 0 and 0.04 is presented in Fig. 5. The
major issue to be examined in this figure is the
response of ¢, to the variations of the controiling
parameters r¥, K; and Pe. Examination of the curves
of Fig. 5 reveals that for the set of parameters chosen,
the mean bulk temperatures at the exit of the heating
region, i.e. x* = 0.04 are essentially identical. Mean-
while, for a fixed value of r¥, the effect of the con-
ductivity ratio K is to increase slightly the bulk tem-
perature at intermediate stations, and at the final
stations too. This outcome is especially noteworthy
since the mean bulk temperature is one of the most
important quantities that needs to be computed as a
result of heat addition at the external surface of the
tube (finite length), with respect to the case of ther-
mally inactive walls (infinite length). In addition to
this, the influence of the Peclet number (Pe = 500,
1500) for each group of curves is not relevant at all.

An even more convincing demonstration of the for-
giving nature of temperature to small values of K
may be seen by examining Fig. 6, which was drawn
for r* = 1.02. Here, it is observed that for K;; up to
100, the distributions of internal surface temperature
are almost identical and independent of Pe. However,
for a moderate value of K; = 1000, the corresponding
curve shows a drastic distortion in the vicinity of both
x* = 0 and 0.04, when compared to the ones already
discussed. For Pe = 500, the temperature at x* =0
is increased two-fold, whereas the temperature at
x* = 0.04 has been reduced by a small percentage
only. This trend is slightly modified for the case char-
acterized by Pe = 1500. The last curve plotted in Fig.
6 corresponds to the case of K, = 10000. Here again,
the internal surface temperature tends to level off.
Moreover, for a fixed Pe = 500, the temperature at
x* = 0 increases by a factor of three, while its value
at the exit x* = 0.04 experiences a reduction of
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F1G. 6. Distributions of internal surface temperature.

approximately 10%. The distortion of the corres-
ponding curve for Pe = 1500 is not as pronounced.

Attention is now turned to the same situation exam-
ined in Fig. 5, but increasing the radii ratio r* to 1.2.
Thus, Fig. 7 has been prepared for this purpose. The
curves for K = 1 and 10 remain unaltered, while the
distribution changes gradually at both ends of the
heating region beginning now with K= 100. The
internal surface temperature at x* = 0 associated with
K = 1000 increases significantly, while its value at
x*¥ = 0.04 drops slightly. This pattern is even more
pronounced for K= 10, where the interfacial
temperature becomes almost uniform for Pe = 500,
This conclusion may be drawn from Fig. 5 too, if
a curve for a higher value of K, say Kz = 10°, is
available.

At this point, it is interesting to note in Figs. 6 and
7 that, regardless of the numerical values of ¥ and
Pe, the internal surface temperature always reaches
an asymptotic uniform value (average value) ¥, as
K — oo for a fixed heating length L* = 0.04. In the
particular case of Fig. 7, W,; = 0.43 approximately,
while W, is slightly less in Fig. 6, both based on
K= 10000. This preliminary analysis suggests that
¥, is independent of r¥ and Pe and depends exclus-
ively on L*. Therefore, under these extreme cir-
cumstances, let us assume the existence of an inter-
facial temperature ¥, that is axially uniform.
Accordingly, performing a global energy balance

HMT 31:11-B
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between the entrance x* = 0 and the exit of the heat-
ing region x* = L*, results in the simple expression

4L*
Yo = m«ﬁ. (19

In this equation 7, designates the dimensionless bulk
temperature under the idealization of uniform wall
temperature and inactive walls, i.e. the so-called classi-
cal Graetz problem. In this sense, an accurate cal-
culation of the corresponding bulk temperature dis-
tribution has been performed by Shah [13] and is
reported in ref. [1].

In order to test the validity of equation (14), let us
carry out a simple computation. Since in this study
L* = 0.04, the value of 1, at this axial station, taken
from ref. [13] is #, = 0.628. Inserting these two num-
bers into equation (14) yields ¥,,,, = 0.43. This value
coincides with the reading of ¢; for K; = 10000 in
Fig. 7. Similarly, this trend is also manifested in Fig.
6, although the isothermal limit is achieved at a higher
value of K.

A comparison between the internal and external
temperature distributions for r} = 1.2, Pe = 500 and
K > 1 is depicted in Fig. 8. For this particular com-
bination, it is observed that the ¥, and ¥,, curves
for K = 1 are quite far apart, but whenever K > 10
deviations between these two temperatures are
unnoticed. This negligible difference prevails always
for high values of K, and small values of r*. This
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peculiar behaviour suggests that, under the cir-
cumstances delineated above, the one-dimensional
approximation may be valid, and consequently
simplifies the analysis of the conjugate problem
drastically.

Ultimately, Fig. 9 has been prepared to compare
the results of the interfacial temperature distribution
based on the one- and two-dimensional models pro-
posed here, and additionally to assess the sensitivity
of the one-dimensional results. In view of the large

0.6 T T T

models :

¢wi r

——- 2 - dimensional

A | —dimensional
0.2 .-

gt = 1.2

Pe = 500

Kgg = | T

0 I { {
(o] 0.02 004
X »*

FI1G. 9. Comparison between one- and two-dimensional for-

mulations.
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number of parameters involved, a rather critical case
having r¥ = 1.2, Pe = 500 and the smallest possible
value of K¢, K;; = 1 was selected for testing purposes.
An overall inspection of the figure reveals that there is
no substantial difference in the interfacial temperature
yielded by the one- and two-dimensional models. It
should be added that computations based on the two-
dimensional model utilized ten radial nodes in the wall
domain.

As a final remark, a few comments on the efficiency
of the computational procedure are in order. As
already noted, the finite-difference grid for the
forced convection domain consisted of 30 x 30 points
(axial x radial). Meanwhile, the grid for the conduction
problem in the solid was made of 30x 10 points
(axial x radial), the circumferential distribution of
which matched that for the forced convection
domain. The computation time was surprisingly
small. A typical run took approximately 15 s of
CPU time to achieve convergence of up to four
decimal figures on a DEC-10 digital computer. In
passing, it should be added that the computational
scheme developed in this paper shows high numerical
stability ; e.g. solutions using a coarse grid consisting
of four radial nodes in the fluid and only one node in
the solid agree well with those utilizing more refined
grids.
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TRANSFERT THERMIQUE PAR UN ECOULEMENT LAMINAIRE DANS DES TUBES
CIRCULAIRES, AVEC CONDUCTION PARIETALE BIDIMENSIONNELLE

Résumé—On examine 'influence d’une longueur finie de chauffage sur les caractéristiques du transfert
thermique par des écoulements laminaires 4 travers des tubes circulaires 4 paroi épaisse. Supposant des
propriétés indépendantes de la température, ce probléme conjugué est gouverné par quatre groupes
adimensionnels: la longueur de la région chauffée, le nombre de Peclet, le rapport des conductivités
thermiques solide—fluide et le rapport des rayons sur la parot solide. A partir des solutions numériques
obtenues par la méthode du volume de contrdle, on trouve que la paroi bidimensionnelle provoque un
domaine de chauffage dans le fluide qui contréle les paramétres tels que la température moyenne du fluide
et les températures des surfaces interne et externe de la paroi solide. A partir d’un ensemble de cas typiques
analysés, on conclut que les deux températures de surface varient de fagon sensible dans la direction axiale
tandis que les variations de la température moyenne sont moindres et plus graduelles. On explique en détail
une solution radicale limite basée sur une approximation monodimensionnelle de 1'équation de conduction
dans la paroi.

DER WARMEUBERGANG BEI LAMINARER STROMUNG IN KREJSFORMIGEN
ROHREN MIT BERUCKSICHTIGUNG DER ZWEIDIMENSIONALEN WARMELEITUNG IN
DER WAND

Zusammenfassung—In diesem Bericht wird der Einflu einer endlichen beheizten Linge auf den Wirme-
ibergang bei laminarer Stromung in dickwandigen kreisférmigen Rohren untersucht. Unter der
Annahme von temperaturunabhingigen Stoffwerten wird dieses gekoppelte Problem von vier dimen-
sionslosen GroBen beeinfluBt: der Linge der beheizten Zone, der Peclet-Zahl, dem Verhéltnis der Warme-
leitfahigkeiten des Rohrs und des Fluids sowie des Radiusverhiltnisses des Rohrs. Durch numerische
Lésungen mit Hilfe der Kontrollvolumenniherung wurde festgestellt, daB die Lingswéirmeleitung in der
Wand einen EinfluB auf die Temperatur des Fluids und die WandauBen- und -innentemperatur des Rohrs
hat. Aus der Betrachtung von typischen Fillen wird geschlossen, daB3 die beiden Oberflichentemperaturen
eine wesentliche Anderung in axialer Richtung zeigen, wihrend bei der Verteilung der Fluidtemperatur
eine geringere Verdnderung auftritt. Auf eine Grenzl6sung, die auf einer bereichsweise eindimensionalen
Niherung der Wirmeleitungsgleichung fiir die Wand beruht, wird ebenfalls eingegangen.

TETUJIONNEPEHOC TP IAMHUHAPHOM TEYEHHWH B KPYTJIBIX TPYBAX C VYETOM
ABYXMEPHOYA TEIUIOITPOBOJHOCTU CTEHKH

Annoramms—PaccMaTpHBaeTCs BITHSHHE HATPEBAEMOTO Y4aCTKa KOHEYHOH IUIMHBLI HA XapaKTEPHCTHKH
Tel1006MeHa NMpH JJaMHHAPHOM TEYeHHR B KpYIJIBIX Tpybax ¢ ToscToit crenkoit. B mpeamonoxenuu
HE3aBHCHMOCTH CBOHCTB OT TeMIEPaTyPH JUIf JaHHOH CONpAXEHHOH 3aNadu B KadecTBe ONpeleiso-
IIHX KPHTEPHEB PaCCMATPHBAIOTCA . JUTMHA HATPEBAEMOTO ydacTka, yucyio Ilexse, OTHOMIEHHE TerLIonpo-
BOZHOCTEH TBEPAOTO TeNa H XAIKOCTH, a TAKXE OTHOIIEHAE paiaMyca TPyOB Kk TOJILMHE TBEpIOH
CTeHKH. B pe3ybTaTe YHCIEHHBIX PACYETOB C HCNIOJIB30BAHHEM METOAA KOHTPOJBHOTO 065eMa YCTaHOB-
JIEHO, YTO A3MEHAA YCJIOBHSA TEILIOOTAAYH OT CTEHKH B NMOTOK XHAKOCTH, MOXHO YIPABAATh TAKHMH
BaXHBIMH [apaMETPaMH, KaK CPEOHEMAaccoBas TEMIEPATypa XHAKOCTH, d Takke BHYTpEHHAS M
BHEIUASIA TEMIICPaTyphl IOBEPXHOCTH TBEPIOH CTEHKH. AHANHM3 psifa THNHYHBIX CIy4acB MOKa3bIBaET,
470 06€ TeMINIEpaTypHl OBEPXHOCTEH TPYGBI MOTYT CYILECTBEHHO H3MEHSATLCA B OCEBOM HAIPaBJICHHH, B
TO BpeMs KaK CPEHEMACCOBas TEMIIEPATYPA H3MEHACTCA MeHee 3HAYMTEbHO M Gosee mwiaBHO. Taxke
AeTanbHO 0o6CyXIacTCs acCHMIITOTHYECKOE peIleHHe, Gasupylomeecs Ha ONHOMEPHOH annpoXcHMaLHH
TEILIOOTAAYH Yepe3 CTEHKY.



